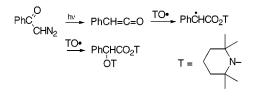
LETTERS 1999 Vol. 1, No. 5 693–696

ORGANIC

Radical Additions of TEMPO to Ketenes: Correlation of Free Radical and Nucleophilic Reactivity


Annette D. Allen, Bernice Cheng, Michael H. Fenwick, Wen-wei Huang, Sharif Missiha, Daryoush Tahmassebi, and Thomas T. Tidwell*

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

ttidwell@chem.utoronto.ca

Received April 30, 1999

ABSTRACT

Tetramethylpiperidinyloxy (TEMPO, TO[•]) reacts with a variety of ketenes $R^1R^2C=C=O$ by rate-limiting attack on carbonyl carbon to give the 1,2-bis(adducts) $R^1R^2C(OT)CO_2T$. The $\alpha_i\beta$ -unsaturated ketenes (*E*)-PhCH=CHCH=C=O (8b) and PhC=CCH=C=O (8c) give the 1,4-bis(adducts) PhCH(OT)CH=CHCO_2T and PhC(OT)=C=CHCO_2T. The ketenes may be generated *in situ* for these reactions in the presence of TEMPO by either dehydrochlorination of $R^1R^2CHCOCI$ with Et_3N or Wolff rearrangement. Ketenes PhCH=C=O (8a), 8b, and 8c had not previously been observed as long-lived species at room temperature, but when formed by photochemical Wolff rearrangement, these could be characterized in solution by conventional IR spectroscopy and used for kinetic studies for reaction with TEMPO using UV detection. The reactions of six ketenes with TEMPO in hydrocarbon solvents follow second-order kinetics, with a range of 2.5×10^5 in the rate constants, which are correlated with unit slope with the corresponding rate constants for hydration.

Free radical additions to ketenes^{1,2} have received only scattered attention since the original observation by Staudinger that $Ph_2C=C=O$ (1) was sensitive to O_2 , which implies that ketenes are reactive with free radicals. Recent theoretical studies^{2a} at the B3LYP/6-31G*//B3LYP/6-31G* level of the possible reaction pathways shown in eq 1 support this

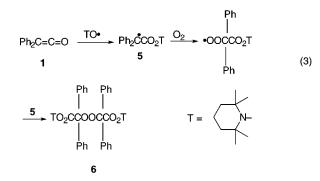
$$R + CH_2 = C = O \longrightarrow RCH_2 \dot{C} = O + 2$$

$$2$$

$$(1)$$

$$\dot{C}H_2 C_{R}^{(0)} \longrightarrow CH_2 = \dot{C} + CH_2 = \dot{C} - OR$$

$$R \qquad 3 \qquad R \qquad 4$$


expectation and predict that the formations of acyl radicals **2** and enolic radicals **3** are exothermic by 32.6 and 54.7 kcal/ mol, respectively, for HO[•] attachment. For the aminoxyl radical H₂NO[•] attack at CH₂ is predicted to be endothermic by 7.5 kcal/mol, while carbonyl carbon attack is exothermic by 18.7 kcal/mol (eq 2).^{2b}

$$H_2 NOC H_2 C=0 \xrightarrow{H_2 NO^{\bullet}} CH_2 = C=0 \xrightarrow{H_2 NO^{\bullet}} CH_2 C_2 ON H_2 (2)$$

Experimental studies with the stable free radical 2,2,6,6tetramethylpiperidinyloxy (TEMPO, TO•) have confirmed these predictions.^{2b} Thus, the persistent ketene Ph₂C=C=O reacts readily with TEMPO, and exposure of the product to O₂ gives peroxide **6** by the proposed mechanism shown (eq 3), while the bisketene (Me₃SiC=C=O)₂ (**7**)^{2c} and TEMPO form bis(trimethylsilyl) maleic anhydride.^{2b}

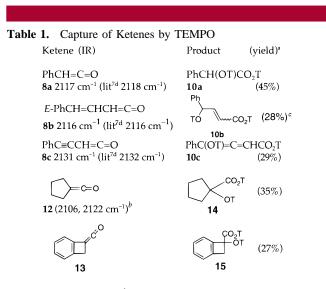
^{(1) (}a) Tidwell, T. T. *Ketenes*; Wiley: New York, 1995. (b) Michael J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J. *J. Chem. Phys.* **1979**, 70, 5222–5227. (c) Itzel, H.; Fischer, H. *Helv. Chim. Acta* **1976**, *59*, 880–901. (d) Oehlers, C.; Temps, F.; Wagner, H. G.; Wolf, M. Ber. Bunsen-Ges. Phys. Chem. **1992**, *96*, 171–175. (e) Wallington, T. J.; Ball, J. C.; Straccia, A. M.; Hurley, M. D.; Kaiser, E. W.; Dill, M.; Schneider, W. F.; Bilde, M. Int. J. Chem. Kinet. **1996**, *28*, 627–635.

^{(2) (}a) Sung, K.; Tidwell, T. T. J. Org. Chem. 1998, 63, 9690–9697.
(b) Huang, W.; Henry-Riyad, H.; Tidwell, T. T. J. Am. Chem. Soc. 1999, 121, 3939–3943. (c) Zhao, D.; Allen, A. D.; Tidwell, T. T. J. Am. Chem. Soc. 1993, 115, 10097–10103. (d) Carter, J.; Fenwick, M. H.; Huang, W.; Popic, V. V.; Tidwell, T. T. Can. J. Chem. 1999, 77, 806–809.

The use of nitroxyl radicals as radical traps is widely practiced,^{3–5} and the examination of their reactions with nonradical species is also attracting increasing attention. Thus, the kinetics of hydrogen abstraction from various substrates by $(CF_3)_2NO^{\bullet}$ have been measured,^{4a} and TEMPO has been found to abstract H atoms from methylbenzenes at 120 °C.^{4b} The reversible reactions of TEMPO with benzyl radicals have also found extensive application in living free radical polymerization.⁵

There have been many recent kinetic studies of radical additions to alkenes,⁶ and the discovery^{2b} of the reaction of TEMPO with Ph₂C=C=O and with the bis(ketene) **7** suggests an opportunity to extend the study of TEMPO reactions to include other ketenes and activated alkenes. Reported herein are our studies of the scope of the reaction with ketenes, which also reveal that a number of highly reactive ketenes may be generated by Wolff rearrangement for direct observation using conventional spectroscopy at ambient temperature.

Phenylketene (8a) is the prototype of a reactive, nonpersistent ketene and was first generated by Zn dechlorination of PhCHClCOCl by Staudinger in 1911.^{7a} However, strenuous efforts to isolate this ketene were unsuccessful, although there was evidence from trapping experiments of its presence in solution.^{7a} Since that time this ketene has been generated in situ for preparative or mechanistic studies, including cycloadditions,^{7b} hydration,^{7c} and amination.^{7d} Wolff rearrangement of diazoketones such as 9a-c provides a convenient route to highly reactive ketenes such as 8a-c.


$$\begin{array}{ccc} \mathsf{RC}''_{\mathsf{CHN}_2} & \xrightarrow{\mathsf{hv}} & \mathsf{RCH=C=O} \\ & & & \mathbf{8}a{-}c \end{array} \tag{4}$$

9a-c (a, R = Ph; b, R = E-PhCH=CH; c, R = PhC=C)

Diazoacetophenone (9a) proved to be a suitable precursor of PhCH=C=O (8a) for in situ trapping with TEMPO, as 9a was inert to TEMPO at room temperature but upon refluxing of the mixture in toluene gave the adduct **10a** of 1,2-addition of two TEMPO molecules (eq 5). The structure

of **10a** follows from the spectral properties, including the C=O band in the IR at 1750 cm⁻¹, and the ¹H NMR spectrum, with the CHO signal at δ 5.23, and there are eight cleanly resolved CH₃ singlets, as expected not only due to the conformational properties of the piperidinyloxy groups⁸ but also to the diastereotopic nature of the CMe₂ units. The structure of **10a** was confirmed by its X-ray structure. Initial attack of TEMPO on the carbonyl carbon of **8a** to give the enolic radical **11a** is expected by analogy with the results from Ph₂C=C=O (eq 3), followed by capture by the second TEMPO molecule as documented for other enolic radicals.^{4c} Generation of the 1-naphthyl analogue of **8a** by Wolff rearrangement and trapping as the TEMPO adduct corresponding to **10a** has also been reported.^{2d}

The photochemical Wolff rearrangement of diazoketones **9b**,^{9b} **9c**,^{9a} and others^{10a,11} to give ketenes **8b**,^{9a} **8c**,^{9a} **12**,^{10b} and **13**¹¹ for trapping with TEMPO was also successful and led to the bis(adducts) **10b,c**, **14**, and **15** (Table 1).¹²

^a Yields not optimized. ^b Similar spectrum published in ref 10b. ^c Reference 12.

The dehydrochlorination of acyl chlorides with Et₃N is a long established route to ketenes,^{1a} and this procedure carried

^{(3) (}a)Volodarsky, L. B.; Reznikov, V. A.; Ovcharenko, V. I. Synthetic Chemistry of Stable Nitroxides; CRC Press: Boca Raton, FL, 1994. (b) Keana, J. F. W. Chem. Rev. **1978**, 78, 37–64. (c) Aurich, H. G. Nitroxides. In Nitronates, Nitronates, Nitroxides; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 4.

^{(4) (}a) Doba, T.; Ingold, K. U. J. Am. Chem. Soc. **1984**, 106, 3958– 3963. (b) Connolly, T. J.; Scaiano, J. C. Tetrahedron Lett. **1997**, 38, 1133– 1136. (c) Braslau, R.; Burrill, L. C., II; Siano, M.; Naik, N.; Howden, R. K.; Mahal, L. K. Macromolecules **1997**, 30, 6445–6450. (d) Barton, D. H. R.; Le Gloahec, V. N.; Smith, J. Tetrahedron Lett. **1998**, 39, 7483–7486.

^{(5) (}a) Kothe, T.; Marque, S.; Martschke, R.; Popov, M.; Fischer, H. J. Chem. Soc., Perkin Trans. 2 **1998**, 1553–1559. (b) Hawker, C. J. Acc. Chem. Res. **1997**, *30*, 373–382. (c) Kazmaier, P. M.; Daimon, K.; Georges, M. K.; Hamer, G. K.; Veregin, R. P. N. Macromolecules **1997**, *30*, 2228–2231. (d) Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. J. Am. Chem. Soc. **1999**, *121*, 3904–3920.

^{(6) (}a) Zytowski, T.; Fischer, H. J. Am. Chem. Soc. **1997**, 119, 12869–12878. (b) Avila, D. V.; Ingold, K. U.; Lusztyk, J.; Dolbier, W. R., Jr.; Pan, H.-Q.; Muir, M. J. Am. Chem. Soc. **1994**, 116, 99–104.

out in the presence of TEMPO also proved successful for the in situ trapping of ketenes (eq 6).

$$\operatorname{RCH}_{2}\operatorname{COCl} \xrightarrow{\operatorname{Et}_{3}\mathrm{N}} \operatorname{RCH} = \operatorname{C} = \operatorname{O} \xrightarrow{\operatorname{2TO}^{\bullet}} \operatorname{RCH}(\operatorname{OT})\operatorname{CO}_{2}\mathrm{T} \qquad (6)$$

8a,b,d,e 10a,b,d,e

Kinetic studies of amination^{7d} and hydration^{7c,9a} of reactive ketenes, including **8a**–**c**, were previously carried out using in situ generation of the ketenes by Wolff rearrangement using flash photolysis of diazo ketones. However, this methodology may be complicated for studies of ketene reactions with TEMPO, which has a strong UV/visible chromophore. We have circumvented this obstacle by finding that solutions of these ketenes may be generated separately by Wolff rearrangements in hydrocarbon solvents, and these are surprisingly long-lived, permitting their spectral characterization and use. Thus, photolysis of diazo ketones **9a**–**c** and 2-diazocyclohexanone in isooctane gave solutions of ketenes **8a**–**c** and **12**, whose characteristic ketenyl IR bands (Table 1) and UV spectra could be measured by conventional means and are in good agreement with literature results.

Measurement of the rates of reaction of the long-lived ketenes 1 and 7 with excess TEMPO was successful, as determined by observation of the decrease in the ketene chromophores by UV (Table 2). Interestingly the theoretically

Table 2.	Rate Constants for Ketene Reaction with TEMPO at
25 °C ^a	

ketene	k_2^{TEMPO} (M ⁻¹ s ⁻¹)
Ph ₂ C=C=O (1)	0.357
$(Me_3SiC=C=O)_2$ (7)	$1.50 imes10^{-4}$ b
PhCH=C=O (8a)	1.26
<i>(E)</i> -PhCH=CHCH=C=O (8b)	18.4
PhC≡CCH=C=O (8c)	37.4
C=0	$2.98 imes10^{-2}$ c

^{*a*} In isooctane unless noted. ^{*b*} In mesitylene, extrapolated from data at higher temperatures; $\Delta H^{\ddagger} = 13.8$ kcal/mol, $\Delta S^{\ddagger} = -29.6$ cal K⁻¹ M⁻¹. ^{*c*} H₂O rate. ^{13c}

calculated^{2a} ΔS^{\ddagger} value for attachment of HO[•] to C_{α} of CH₂= C=O is -32.3 eu, which is quite close to the value of -29.6

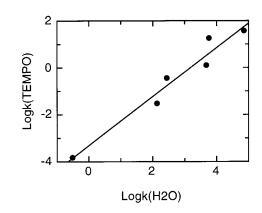


Figure 1. Comparative reactivity of ketenes with TEMPO and $\mathrm{H}_{2}\mathrm{O}.$

eu found for the reaction of **7** with TEMPO. This is reasonable for these bimolecular reactions proceeding by similar mechanisms.

Solutions of the ketenes 8a-c and 12 were prepared by photochemical Wolff rearrangements, and their reaction rates with TEMPO were measured using conventional UV. All the ketenes showed good first-order dependences on [TEMPO]; the derived second-order rate constants are summarized in Table 2, and full kinetic data are given in Table 3 (Supporting Information).

The rate constants for the reactions of the ketenes with TEMPO show a variation of 2.5×10^5 with ketene structure. There have been extensive studies of the hydration reactivities of ketenes in H₂O^{2c,7c,9a,13a-c} and for amination in CH₃-CN,^{7d,14a} and both these reactions also show large variations in reactivity with ketene structure. Theoretical studies of ketene hydration and amination favor rate-limiting in-plane nucleophilic attack on the carbonyl carbon, with hydrogen bonding interactions involving other H₂O or amine molecules coordinating with the nucleophile and the ketenyl oxygen.^{1a,14b-e}

The most extensive set of ketene reactivity data is for hydration, and correlation of log k_{TEMPO} for the reaction of the ketenes with TEMPO (25 °C) with the corresponding values of log *k* for hydration in H₂O gives the relationship of eq 7, as illustrated in Figure 1. The unit slope leads to the interesting conclusion that the reactions of ketenes with

^{(7) (}a) Staudinger, H. Chem. Ber. **1911**, 44, 533–543. (b) Bellus, D. J. Am. Chem. Soc. **1978**, 100, 8026–8028. (c) Allen, A. D.; Kresge, A. J.; Schepp, N. P.; Tidwell, T. T. Can. J. Chem. **1987**, 65, 1719–1723. (d) Wagner, B. D.; Arnold, B. R.; Brown, G. S.; Lusztyk, J. J. Am. Chem. Soc. **1998**, 120, 1827–1834.

⁽⁸⁾ Anderson, J. E.; Casarini, D.; Corrie, J. E. T.; Lunazzi, L. J. Chem. Soc., Perkin Trans. 2 1993, 1299–1304.

^{(9) (}a) Allen, A. D.; Andraos, J.; Kresge, A. J.; McAllister, M. A.;
Tidwell, T. T. J. Am. Chem. Soc. 1992, 114, 1878–1879. (b) Danheiser,
R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959–1964. (c) Selvarajan, R.; Boyer, J. H. J. Org. Chem. 1971, 36, 1679–1682.

^{(10) (}a) Tomioka, H.; Okuno, H.; Izawa, Y. J. Org. Chem. **1980**, 45, 5278–5283. (b) Schulz, R.; Schweig, A. Z. Naturforsch. **1984**, 39B, 1536–1540.

^{(11) (}a) Chapman, O. L.; Chang, C.-C.; Kolc, J.; Rosenquist, N. R.; Tomioka, H. *J. Am. Chem. Soc.* **1975**, *97*, 6586–6588. (b) Spangler, R. J.; Kim, J. H.; Cava, M. P. *J. Org. Chem.* **1977**, *42*, 1697–1703.

⁽¹²⁾ The product **10b** is obtained as an unseparated 2/1 or 3/1 mixture of E/Z isomers by dehydrochlorination or Wolff rearrangement, respectively, as identified by the 2-D ¹H and ¹³C NMR spectra. The yield reported is for the dehydrochlorination route. Products **10c**-e, **14** and **15** are identified by consistent NMR, MS, and IR spectra. See the Supporting Information for details.

^{(13) (}a) Andraos, J.; Kresge, A. J. J. Photochem. Photobiol. A: Chem.
1991, 57, 165–173. (b) Allen, A. D.; Tidwell, T. T. J. Am. Chem. Soc.
1987, 109, 2774–2780. (c) Andraos, J. Ph.D. Thesis, University of Toronto,
1993. (d) Sharma, S. D.; Pandhi, S. B. J. Org. Chem. 1990, 55, 2196–2200.

 $\log k_{\rm TEMPO} = (0.98 \pm 0.08) \log k_{\rm H_2O} - (3.30 \pm 0.19)$ (7)

TEMPO, which involve formation of a C-O bond, correlate with the hydration reactivities, which also involve C-O bond formation.

Attachment of H₂NO• to C_{α} of CH₂=C=O is calculated^{2b} to be 36.0 kcal/mol less favorable than the corresponding attachment of HO•,^{2a} and experimentally the reaction of TEMPO with ketenes shows appreciable barriers (Table 2). This is consistent with the much lower reactivity calculated

for H_2NO^{\bullet} relative to HO[•] and also with the steric barriers expected for reaction of TEMPO compared with H_2NO^{\bullet} .

Acknowledgment. Financial support by the Natural Sciences and Engineering Research Council of Canada and the donation of diazo ketone **9b** by Professor R. Danheiser (MIT) are gratefully acknowledged.

Supporting Information Available: Experimental procedures, kinetic data, NMR spectra, and X-ray structural information on **10a** and an X-ray crystallographic file, in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL990628I

^{(14) (}a) Allen, A. D.; Tidwell, T. T. J. Org. Chem. 1999, 63, 266-271.
(b) Sung, K.; Tidwell, T. T. J. Am. Chem. Soc. 1998, 120, 3043-3048. (c) Raspoet, G.; Nguyen, M. T.; Kelly, S.; Hegarty, A. F. J. Org. Chem. 1998, 63, 9669-9677. (d) Nguyen, M. T.; Hegarty, A. F. J. Am. Chem. Soc. 1984, 106, 1552-1557. (e) Nguyen, M. T.; Raspoet, G. Can. J. Chem. 1999, 77, 817-829.